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ABSTRACT
In this study, we focused on one-to-many remote collaboration
which requires more mental resources from the remote instructor
than the case of one-to-one since it is "multitasking". The main
contribution of our study is that we assessed instructor’s capacity
in one-to-many AR remote instruction giving both subjectively and
objectively. We compared the remote instructor’s workload while
interacting with a different number of local workers, assuming
tasks at an industrial site. The results showed that the instructors
perceived stronger workload and the communication quality
became lower when interacting with multiple local workers. Based
on the results, we discussed how to support the remote instructor
in a one-to-many AR remote collaboration.

CCS CONCEPTS
• Human-centered computing → Computer supported
cooperative work.
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1 INTRODUCTION
Remote collaboration has been an important research topic in
CSCW and researchers have proposed various AR technologies
to support remote skilled workers or instructors to assist local
workers [1, 5, 30, 32]. However, most of the past studies have
focused on one-to-one remote collaboration [18, 34]. In recent years,
owing to the shortage of skilled workers, occasions that one skilled
worker needs to assist multiple workers are increasing. Therefore,
one-to-many remote collaboration is attracting researchers’
attention. For example, Lee et al. proposed and evaluated various
view-sharing AR techniques to support such collaboration [21].

One of the possible advantages of one-to-many collaboration
is that, if a remote instructor can observe multiple local workers
simultaneously, it will be easy for the instructor to find a worker
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Figure 1: One-to-many AR remote collaboration system used
in this study.

who is in need of assistance and instantly take care of him/her.
Furthermore, even when the instructor is dealing with a specific
worker, the instructor can observe other workers in his peripheral
view and instantly switch to another worker for help. However,
such collaboration requires more mental resources from the remote
instructor than the case of one-to-one, because it is “multitasking”.
Multitasking hurts work efficiency and task management [24, 35].
However, unlike face-to-face collaboration, remote collaboration
involves devices, such as mobile/wearable devices between an
instructor and a worker; thus, the instructor’s workload can be
reduced and also work efficiency can be improved by providing the
appropriate information via devices.

We aim to develop an AR system that supports instructors and
improves work efficiency in one-to-many remote collaboration
(Figure 1). As the initial stage of our research, we assessed
instructor’s capacity in one-to-many AR remote instruction
giving both subjectively and objectively. We investigated how the
workload is affected depending on the number of workers when
a remote instructor observes and instructs multiple local workers
in parallel, assuming tabletop assembly, repair, and maintenance
tasks at an industrial site. Based on the results, we discussed how
to support the remote instructor in a one-to-many AR remote
collaboration.

2 RELATEDWORK
2.1 AR Remote Collaboration
2.1.1 One-to-One AR Remote Collaboration. A typical usage
scenario of the AR remote collaboration system is that a remote
expert instructs local unskilled workers [10, 27, 28]. By using AR,
participants can share richer information such as non-verbal cues,
compared to existing instructional technologies. The target of this
study is collaborative physical tasks that the participants act on
physical objects, such as assembly, repair, and maintenance.

There are some examples where an instructor instructs a local
worker to search for and place physical objects from a remote
location. Studies have evaluated the effects of sharing the eye gaze
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and/or hand gestures between the instructor and worker [2, 22], and
the perspectives from which remote instructors prefer to observe
the worker’s view [9]. Some systems can provide AR instructions
onto physical objects on using small projectors [13], or through a
tablet [4, 11]. These studies discussed on what to share between
the instructor and the worker, in what form, and with what device.
Additionally, these systems are designed to work in a large space
while walking around.

Various AR remote collaboration systems for tabletop tasks have
also been proposed, specifically for assembly tasks. For example,
visualizing and sharing the worker’s attention [8], sharing the hand
gestures of a remote instructor with a worker [19, 20], and sharing
gestures and facial expressions [16]. In line with these studies, in
this study, we developed a system that enables an instructor to
instruct a worker using voice and gestures for tasks on a tabletop,
and use it as a testbed.

2.1.2 One-to-Many AR Remote Collaboration. Due to the recent
shortage of skilled workers, one skilled worker needs to support
multiple workers in parallel. Schott et al. developed an AR
collaborative learning system that allows VR and AR users
to interact with each other [29]. However, unlike our study,
their system does not deal with physical tasks. Lee et al.
proposed various viewpoint-sharing AR techniques to support
one-to-many collaboration in physical object exploration and
placement tasks and evaluated their effectiveness [21]. Norman et al.
investigated how role assignment affects group task coordination
and engagement during a furniture placement task in mixed reality
[25] and found that when a remote participant took on the role of
coordinator for two local workers, the workload was significantly
higher than when all the participants took on equivalent roles and
discussed the task together.

These studies evaluated the task completion time and workload
in a one-to-two configuration; however, they did not discuss how
the measures are affected by the number of local workers.

2.2 Multitasking Load
The one-to-many AR remote collaboration to support tasks on
a tabletop, which is the target of this study, is “multitasking”; a
remote skilled worker must give appropriate instructions to each
workerwhenever they need help (primary task), and simultaneously
monitor each worker and understand the situation (secondary task).
It is known that multitasking causes a significant decrease in work
efficiency when switching tasks [24], and task management errors
occur when the mental workload during multitasking is high [35].

Fan et al. measured the workload on participants who were
tasked with monitoring multiple meters and pressing a key when
they deviated from the normal range [6]. When the number of
monitored objects was changed from 2, 4, and 6, the subjective
workload was significantly higher, the reaction time increased,
and the accuracy of finding abnormal values decreased. However,
a study by compared the physiological and subjective mental
workload of radiation therapists when the number of monitors
changed 2 or 3, and no significant differences were identified [26].

When it comes to one person monitoring multiple workers at
the same time, the case of one teacher teaching programming
simultaneously to multiple students is also relevant. Systems that

visualize mutual eye contact on the screen [36] or provide support
through chat [12] have been proposed. However, the relationship
between the number of people and workload is not mentioned.
Parallel eyes [17] and Parallel Ping-Pong [31] are systems that
allow multiple people to share a viewpoint using HMDs. They
conducted workshops that used these systems and found that the
systems yielded high cognitive workload to the participants, but
there was no quantitative evaluation.

In this study, the workload will be higher than that of previous
studies because the instructors not only monitor the situation but
also provide instructions corresponding to the situation, for a 3D
assembly task that requires spatial comprehension. To the best of
our knowledge, there are no studies that support this, and thus the
main contribution of our study is clarifying this quantitatively.

3 EXPERIMENT
3.1 Hypothesis
Although there are different types of one-to-many collaboration, in
this study, we focused on the situation that multiple local workers
work on an identical task but at different sites. In such a situation,
the workers follow the pre-defined work process. However, when
they encounter an unknown step, they ask for instructions from a
remote instructor (skilled worker). As described in Section 2, this is a
multitasking for a remote instructor. Therefore, in this situation, we
hypothesized that the instructor’s workload is affected depending
on the number of workers; as the number of workers increases,
the instructor (participant) further experiences a higher workload
while interacting with them.

3.2 Experimental Design
To examine the hypothesis, we designed a one-factor
within-participant experiment in which the number of workers
(1-3) was the factor. In this experiment, we selected a Lego assembly
task was selected as the task since it contains similar motion
elements as assembly, repair, and maintenance work, and it is
often used as a task to simulate these tasks in remote collaboration
studies. [2, 7, 15, 18].

3.3 System Configuration
We developed a one-to-many AR remote collaboration system
(Figure 1). The local worker observes the local environment using
an HMD (HTC VIVE Pro) with a stereo camera (ZED mini). The
remote instructor can observe the view of up to four workers
simultaneously through an LCD monitor (BenQ gw2255, 21.5-inch).
The screen size of each worker’s view is about 10-inch regardless
of the number of workers. In addition to speech, hand gestures of
the remote instructor are obtained using Leap motion. The remote
instructor can click the view of a target worker who needs help,
then the instructor’s gestures are superimposed on the selected
local worker’s view using AR, and shown to both the instructor
and the target worker.

3.4 Experimental Procedure and Participants
The participant played the instructor’s role sat in front of the
LCD monitor and participated in a total of three sessions of the
experiment. In each session, the participant conducted one Lego
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assembly task with workers. The participant received a complete
version of the manual and gave instructions as requested by the
workers. To simulate a situation in which the workers needed
assistance from the instructor, 15% of the steps of the workers’
manuals were masked, and the masked steps were randomly
and evenly distributed throughout the whole procedures. Besides,
the masked steps are different between workers. The workers
performed assembly work independently based on the manuals
step by step, and when they encountered the masked procedure,
they paused the task and asked the instructor for instructions.

Because the purpose of this experiment was to assess instructor’s
capacity, we decided to employ three confederates as workers
and trained them beforehand so that they can perform a series
of tasks at a constant speed without delay and ask the instructor
for assistance in the same manner. The confederates participated
in all experiments and all sessions to minimize the bias caused by
the differences among the individual workers.

We limited the duration of one session to 25 minutes, and each
task was designed to require sufficiently longer than 25 minutes.
After finishing each session, the participants completed two
questionnaires (see the "Measures" section). Then, the participants
rested for 10 minutes before starting the next session. After all the
three sessions, semi-structured interviews were conducted with the
participants to discuss the differences in the number of participants,
the difficulties in giving instructions, and the usability of the system.

The number of workers and the type of Lego models were all
different in the three sessions and were counterbalanced. Eleven
participants took part in the experiment. Six were male and five
were female, and the mean age was 26.27 years (SE=4.9). All
participants were native Japanese speakers and each participant
received 5,000 yen as remuneration.

3.5 Measures
3.5.1 Subjective measures. We asked the participants to respond to
the NASA-TLX to measure the workload [14] and QCE to measure
the quality of the communication experienced [23]. Specifically,
QCE measures the three dimensions of communication (Clarity,
Responsiveness, and Comfort). Each dimension includes five items
on a 7-point Likert scale.

3.5.2 Objective measures. We conducted video analysis to analyze
the instructor and workers behavior. In this task, the instructor
(participant) gave instructions each time the worker reached the
masked part of the manual. We defined "instruction time" as the
time between the moment the instructor switches the target worker
and the moment when s/he confirmed the completion of a step
(e.g. by saying O.K.) at the end of the instruction. When there
were more than two workers, there were cases where workers
simultaneously asked for instructions, and the other workers had
to wait for instructions while one worker received instructions. We
defined this as "idle state". The time which the worker is in the idle
state is referred to as the "idle time". To generalize the discussion,
the instructor’s "utilization rate" was calculated by dividing the
total instruction time by the session time (25 min). We also counted
the number of occurrences of both instruction and idle state.

Figure 2: NASA-TLX results

Figure 3: QCE results

4 RESULTS
4.1 Subjective Evaluation
The NASA-TLX results are shown in Figure 2. A linear mixed model
was constructed for the analysis; a Type III analysis of the variance
table using Satterthwaite’s method revealed significant differences
in NASA-TLX scores for different numbers of workers (F(2,20)
= 25.17, p < .001). Post hoc tests with the Bonferroni correction
showed that the scores in the 1-worker condition were significantly
lower than those in the 2- and 3-worker condition (t(20) = 4.92, p <
.001, t(20) = 6.89, p < .001, respectively).

In addition, a linear mixed model was constructed to analyze
the result of each subscale of the NASA-TLX. The results showed
significant differences in all subscale scores across conditions
(mental demand: F(2,20) = 6.30, p = .007; physical demand: F(2,
20) = 12.77, p < .001; temporal demand: F(2, 20) = 13.66, p < .001;
performance: F(2, 20) = 3.89, p = .04; effort: F(2,20) = 27.08, p <
.001; frustration: F(2,20) = 26.92, p < .001). Post hoc tests with the
Bonferroni correction indicated that subscale scores other than
Performance were significantly lower in the 1-worker condition
than the same subscale scores in the 2- and 3-worker conditions.
Effort and frustration were also significantly lower in the 2-worker
condition than in the 3-worker condition.

The results of the QCE are shown in Figure 3. The results of linear
mixedmodels showed significant differences between conditions for
clarity and responsiveness factors (clarity: F(2,20) = 6.06, p = .008;
responsiveness: F(2,20) = 9.62, p =.001). Scores for the 1-worker
condition were also significantly higher than the scores for the
3-worker condition (clarity: t(20) = 3.43 p = .008; responsiveness:
t(20) = 4.37, p < .001).

4.2 Objective Evaluation
For significance tests, we carried out a one-way ANOVA with
the number of workers as a factor. A post-hoc test for multiple
comparisons using Bonferroni correction. Figure 4 shows the
averages of the instruction time and idle time per instruction for
each condition. ANOVA showed a significant difference in both
instruction time (F(2, 20) = 5.18, p < .05, 𝜂2 = .34) and idle time (F(2,
20) = 69.06, p < .01, 𝜂2 = .87). Post hoc tests showed that instruction
time and idle time increased significantly as the number of workers
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Figure 4: Average instruction time and
idle time.

Figure 5: Average number of
instructions and idle states for
one worker in one session

Figure 6: Instructor’s utilization rate

increased (instruction time: between 1- and 3-worker condition (p
< .05); idle time: for all cases (p < .05)).

To see how the work efficiency was affected when the number
of workers increased, we calculated the average number of
instructions and idle states per worker in one session (Figure 5).
ANOVA showed a significant difference in both the number of
instructions (F(2, 20) = 11.48, p < .01, 𝜂2 = .53) and idle states (F(2,
20) = 125.20, p < .01, 𝜂2 = .93). Post hoc tests showed that the
number of instructions decreased significantly as the number of
workers increased from 1- to 2-worker condition and from 1- to
3-worker condition (p < .05), and the number of idle states increased
significantly for all cases (p < .05).

The utilization rate is shown in Figure 6. The utilization rate
was 27.84 % in 1-worker condition, but in 3- workers condition,
it was 85.07%. ANOVA showed a significant difference (F(2, 20) =
134.72, p < .01, 𝜂2 = .93). Post hoc tests showed that instruction time
increased significantly when the number of workers increased for
all cases (p < .05).

5 DISCUSSION AND FUTUREWORK
We assessed instructor’s capacity in one-to-many AR remote

instruction giving. Combination of NASA-TLX results and the
interview results showed that the workload of the participants
(instructors) significantly increased as the number of workers
increased. Specifically, "mental demand," "effort," and "physical
demand" increased due to the need for attention, and "temporal
demand" and "frustration" increased due to the stress of making the
workers wait. The results of the QCE suggested that the stress of
making workers wait decreased the instructors’ understanding
of communication, which might cause more conflicts during
collaboration. These results support our hypothesis.

It is interesting to find that, although the result of utilization
rate showed that the 3-worker condition made the instructor
almost three times busier than 1-worker condition, the number
of instructions per participant decreased and the instruction time
per instruction increased. This indicated that the efficiency of
instruction giving decreased in the 3-worker condition. The video
analysis showed that while receiving a request from a worker, the
instructor often also checked the current progress of the workers.
The low efficiency might be because the instructors had insufficient
capacity to handle such kind of multitasking well in the 3-worker
condition, in such a high utilization rate. Our interview results

also supported this assumption that seven of eleven participants
commented that they could track the progress of one or two
workers, but not three. The low efficiency further increased the
worker’s idle time and number of idle states.

To overcome this issue, following two points need to be solved
when developing a system to support the instructor who is giving
instructions to multiple workers; (1) keep track of each worker’s
task progress especially when the number of workers increases,
and (2) reduce the time required for each instruction.

For (1), a possible approach is to support instructors in
understanding the status of workers, such as presenting each
worker’s progress on the screen, clearly indicating who should be
instructed next, , and visualizing what the worker is looking at. For
(2), based on previous studies [2, 8], the instructions can be easier
by sharing the instructor’s and worker’s gaze each other. It is also
possible that providing linguistic support; speech recognition can
be incorporated (e.g., if the instructor says "red", the red blocks will
be highlighted), and AR labeling can be assigned to prompt lexical
entrainment [3] and establish a common ground among participants
at an early stage [33]. Furthermore, supporting workers through
system may be another way to indirectly support instructors. One
possible method is to record the instructions given to a certain
worker and replay the recorded instructions if another worker has
trouble with the same procedure.

For future work, we plan to add the above functions and
investigate how each function contributes to the reduction
of the utilization rate and workload and the improvement in
work efficiency. We also need to consider introducing different
technologies. As for the ways to share hand gestures, for example,
a technology like MirrorTablet [20] allows an instructor to express
richer expressions by sharing the real hand gestures. As for a
visual display for the instructor, we may consider using 3D display,
which might give better sense of working environments for the
instructor. We need further experiments to understand how these
technologies affect one-to-many instruction giving.
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